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On certain definite integrals which arise in automorphic Lie 
theory 
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Depmment of Mathematics and SWtistics, University of Massachusetts. Amherst, MA 01003, 
USA 

Received 24 November 1992 

Abstract We calculate in closed form a family of definite integrals In(b, 0 ;  e). n = 
0, I ,  2 . 3 , .  . . , which arise in the calculation of regularized functional determinants associzted 
with a compact space form X of a rank 1 Riemannian symmetric space. In the special case 
when n = 0, b = 4, n = ir, c = 1. and X is a Riemann surface. the integral I&,n: 1) is 
known, for example in the context of PolyakQv string theory. 

1. Introduction 

Let Ar be the projection of the Laplace-Beltrami operator A = y2(a2/ax2 + a2/ay2) to 
a compact Riemann surface X r  with fundamental group r and genus g > 2. Here X r  
is represented as the orbit space r \ x+- of the  upper ;-plane K+. For various elliptic 
differential operators D, and psuedo differential operators, it is important in mathematics 
and physics to calculate the regularized functional determinant det D. For Polyakov string 
theory, for example, one has the following useful result (see [7,9]). 

Theorem (1.1). Let Zr be the Selberg zeta function attached to Xr and to the trivial 
representation of r 181. Then det(-Ar +s(s - 1)) = Z r ( s ) S ( ~ ) ~ - ~ s  where the function 6 
is given as follows. For I?(.) the usual gamma function and rZ(.) the Barnes double gamma 
function (see (2.1)) 

where 

: L (1.3) 
def f = - l o g 2 i r -  - ( s e c h 2 x t ) ( a + t 2 ) [ l o g ( a + t 2 ) - l ] d t .  

Also compare 12-4,6]. \ 

f= - ' - ' l ooz i r+~ ' ( -1 ) .  4 2 "  ~ . (1.4) 

The interesting integral in (1.3) can be evaluated in terms of the derivative 5' of 
Riemann's zeta function 5 at the point -1 [9]: 

As <'(-l) = -(0.165421 145) the value o f f  is -(1.49954); compare Fried's remarks in 
the appendix of 141. In this paper we consider more generally integrals of the form 

m 

&(b, a; c)  = t2"(sech2at)(bz +t2)[log(bZ+ tZ)  - c]dt (1.5) L 
0305-4470/93/l43515+12$07.50 @ 1993 IOP Publishing Ltd 3515 
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where b,a > 0, c is a complex number, and n = 0,1,2,3, .... In the main result, 
theorem (4.2), we give a closed form expresssion of the integrals I,,. One obtains, in 
particular, another proof of (1.4) by taking n = 0, b = 4. a = r, c = 1. By theorem (4.2) 
the functions b + ln(b, Q ;  c ) ,  originally defined for b > 0, admit an explicit homomorphic 
continuation in terms of a new class of functions which we denote by An.  The functions A,, 
satisfy a functional equation b + -b which for n = 1 is precisely the classical rejection 
formula for the double gamma functio,n r?; see theorems (2.16) and (2.18). 

As shown in [IO], given theorem (4.2) one can formulate and prove a considerably more 
general version of theorem (1.1) where Xr is replaced by a compact space form of a rank 
1 Riemannian symmetric space. This is the general setting in which the integrals I, first 
arise. Zr makes sense in this generality and from the functional equation for A, (which 
implies a functional equation b + -~b for the integrals I,) one can derive a new proof 
of the functional equation of Zr [lo]. Besides the mathematical applications just pointed 
out, the evaluation of the integrals In, especially in case n = 0, is of interest for physical 
reasons in connection with multiloop calculations for fermonic string theory and random 
surfaces, as D’Hoker and Phong point out in [Z]. The determinant in theorem (1.1) and, 
more generally, the determinant of Laplacians acting on arbitrary tensor and spinor fields 
arise from quantum fluctuations and Faddeev-Popov gauge fixing [6]. 

In the route toward proving the main result we first compute the integrals 

t2”(sech2at) log(b2 + tZ) dt (1.6) 

for 6,  Q > 0, n = 0,1,2, . . .; see theorem (3.19) wherein occurs the term n(‘(1 - 2n) 
involving the special value of the derivative of the Riemann zeta function. In the Riemann 
surface case one needs the J, only for n = 0, 1 and hence one only encounters the special 
value (’(-1). Compare equation (1.4). 

Although the integrals I , ,  J, arose initially by way of certain Lie theoretical and 
mathematical physics considerations, as we have indicated, the present paper requires no 
knowledge of Lie theory nor of Selberg’s,zeta function Z r .  

2. The functions A, 

We introduce the functions A,, which play a key role in this paper. As in the introduction r 
will denote the usual gamma function and rz will denote the Barnes double gamma function 
[I] defined by 

where 

“-+W 

is Euler’s constant and s E @, the field of complex numbers. I / r z  is an entire function 
whose zeros are the points 0, -1, -2, -3,. . .. For r E E, the field of  real numbers, we 
define 

(2.3) U, = Cc - { x  + iyly = 0 and x < -r}. 
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Ur is therefore an open simply connected domain in @. We shall choose the principal branch 
of the complex logarithm. Thus logr and log l/r2 are holomorphic functions on (lo. For 
n = 1,2,3, . . . we define #n to be the unique holomorphic primitive of Z" l o g r ( Z  + 1) on 
U I  which vanishes at 0 

~ ~ ( 2 ) = Z n l o g r ( Z + 1 ) o n L / 1  & ( O ) = O .  (2.4) 

With the preceding definitions in place we introduce the well-defined holomorphic functions 
A, on U * p :  For Z E U+, n = 1,2.3,. . . 

we set A0 = 0. Since &(O) = 0 in (2.4) we have 

A n ( f x )  = 0 for all n. 

Note also that for n = 1 

A l ( Z ) = - x 3 1 0 g r  

- 
2 [ (: - i) (: + 91 +iogr2  (: + i)] 

(2.6) 

Let 

= r'/r (2.8) 

which is meromorphic with simple poles at Z = 0, -1, -2, -3, , . .. 

need. Namely 

Proposition (2.9). 

Proof. For h'(Z)EZ/x  * !j, Lglog  r. L2 = log I /  rz, direct differentiation of (2.5) 
yields 

The function A, arises is the solution of a simple differential  equation that we shall 

AL(Z) = -2nirZz"-'*(Z/x + i) on Uzp  for n 2 I 
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where the latter term in (i) coincides with the negative of the second term in (i). Namely, 
by definition (2.4). and the binomial theorem this latter term is 

(i) therefore simplifies to 

by definition (2.8). Next we use that for Bzllrz 

B'(Z + l )  = + 10g2x + 4 - z + Z+(Z) 
R(Z + 1) 

(2.10) 

with Z+(Z) + 1 = Z@(Z + 1) for Z # -1, -2, -3,. . . ; cf p 661, formula (4) of 
[5 ] .  Note that as Z = 0 is a simple pole of @ with residue = -1, the function 
Z --f Z+(Z) defined to be -1 at Z = 0 has Z = 0 as a removable singularity. For 
Z E Unp,  Z/iT - # -1, -2, -3 , .  . .. Also by definition of L2, L; = B'/B. Thus we 
may choose Z in (2.10) as Z / x  - 4 for Z E U,p to obtain 

1 

by which equation (ii) reduces to 

= - ZrzxZ"-'@(h+(Z)) 

as desired. From the formulae 

I - I  - ~ - 3 / 2 ~ - 1 / 4 ~ 1 / 8 2 1 / 2 h  r(;) = d I 2  - (2.11) 
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where 

log A = -<'(-I) + & 
with 5 as in section 1, one derives for n > 1 

(2.12) 

(2.13) 

With definition (2.3) in mind define 

UG2 = ( Z  E &/Zl  - z E UI/d 
=x+ux-u(- i ,  I 1  I) (2.14) 

where x', x -  denote the upper, lower $plane, respectively. Then by proposition (2.9) and 
the relation 

(2.15) 1 + Z) = $(+ - z )  f i r  t anxz  

one obtains 

Theorem (2.i6). (The functlonal equation for A".) Let CZ for Z in ULP be any contour 
in UTP from 0 to Z. Then for n > 1 

(2.17) 

On the other hand An is given explicitly by definition (2.5). Writing out the left-hand side 
of (2.17) fully and simplifying, we seethat theorem (2.16) is equivalent to 

Theorem (2.18). For n 2 1, Z E and CZ any contour in U;/* from 0 to Z (see (2.14)) 

In particular, for n = 1 we obtain the rejection formula 

Note that in theorem (2.18) 

r(z + + ) r ( - z  + 4) = Z/(COSZZ). 
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3. The integrals &(b, a) 

The purpose of this section is to compute the integrals J,(b,a) defined in (1.6). These 
integrals completely determine the integrals L(b ,  a; c) of (1.5). 

Bn will denote the nth Bernoulli number: 

Let 

I,(a) = xZ”sech2axdx s,- 
=- 

2% x 
(cf [5], p 353) and let 

f e (a )  = lm rZ”(sech2ar) log(1 + tZ)  dt 

log(b2 + x 2 )  = 210gb + log(1 + (x /b ) ’ )  

for a > 0, n = 0 , 1 , 2 , 3 , .  . .. Using 

and the change of variables t = r / b  for b > 0 we see that in view of (3.2). Jn@,  a) is 
determined by the function fn: 

(3.4) Jn(b, a) = 2(logb)ln(u) +b2”+’fn(ab). 
By the change of variables at = x ,. ~~ 

(3.2) 

(3.3) 

where the integral in (3.5) clearly converges uniformly in a > 1. We may therefore 
differentiate under the integral sign in (3.5) to obtain (for a > 1) 

where 

On the other hand, we can write (3.5) alternatively as 

(using log(1 + x Z / u Z )  = log(u2 + x2) - 2 logu) where the integral in (3.8) converges 
uniformly in 0 < a < 1. Differentiating (3.8) under the integral sign we therefore also 
obtain (3.6) for 0 < a < 1. That is, (3.6) holds for a > 0, and as a first-order linear 
differential equation it has a standard trivial solution: 

for c; = constant. The integration in (3.9) can be carried out using proposition (2.9) and 
the following lemma. 
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Lemma (3. IO).  For a =- 0, n i 0, 1,2,3, . . 

(3.11) 

where < is the Hurwitz zeta function: 

for Res > 1 E# -1. -2, -3,. . . . (3.12) 
m 1  

n=0 (n+ 
<(s, E$fC - ' 
Since r2"/(bZ + r2 )  = t2(n-') - b2r2("-1)/(bZ + r Z )  for n > ~ l ,  lemma (3.10) follows by 
induction, using (3.2), once one knows that 

the proof of which will be remarked on later. 
By definition (3.7) and equation (3.11) one has 

But one knows that 16. in (2.8) and < in (3.12) are related by 

@ I ( $ )  = C(2, SI. 

Integration by parts therefore yields 

(3.13) 

&=a%@ -+ -  - 2xnaZn-'@ (a :> s 
=a%@ - + -  +A,(a)+ci (: :> 

(3.15) 

(3.16) 

where the latter equality follows by proposition (2.9)! cl is a constant of integration. From 
equations (3.9), (3.14) and (3.16) 

a2"-2j 2(-1)"c; c:, ' 21n(1)loga 
x B 2 j -  zn - z j  + xaZn+l + aZ"+1 - a2n+l , 

(3.17) 

That is, by (3.2) we get 
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Theorem (3.18). The integral f , (a )  in (3.3) is given by 

2(-1)"+'x" C, + 22nU"+1 (2 - 2&) Bz, logs + pq 
where c, = constant. We now state 

Theorem (3.19). The integral J,(b, a )  in (1.6) is given by 

2(-l)"bz" (: = :> Aa(ab)2(-l)n + U 1G- -+ -  + 

(see (2.5). (2.8), (3.11)) where c, is a constant given by 

for n > 1 ,  where An(0) is given by (2.13); 

CO = 2logx (3.21) 

Up to computation of the constants c,, theorem (3.19) follows from equations (3.2), 
(3.4) and theorem (3.18). As a preliminary step towards finding the c,, choose a = x and 
b = l / m  in the theorem (3.19), m = 1,2,3,  . . . , and let m -+ 00: 

m 
xz"(sech2 x x )  log 

(3.22) 

for n > 1, where one checks that the limit on the left-hand side of (3.22) can be taken under 
the integral sign. That is, by dominated convergence 

c, 
x2n+l 

2(--1)"+'(2 -22") Bz,  logic + 2(-1)"&(0) 
22"X x2n+2 x2"(sech2 x x )  logx dx = - + 

(3.23) 

for n 1, with An(0) given by (2.13). 
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Consider therefore the integral in (3.23). The integal sp” xs-’ sech’ ax dx. for a > 0, 
converges uniformly on compact subsets of Res > 0. It thus defines a holomorphic function 
.of s which may be differentiated under integral sign on Res > 0. A similar statement follows 
for~r,’ = Jp” under the transformation x = l/t: That is, s 3 I ( S ) ~ J : X ~ - ~  sech2axdx 
is holomorphic on Res > 0 and 

(3.24) 

on Res > 0 for a > 0. On the other hand, by p 352 of [51 

4 
I ( ~ )  = -(I -zz-.T)r(s)c(s - I) (3.25) 

(2Q). 

for Res > 0. s # 2; 

1(2) = (l/a’)log2. (3.26) 

4 (1 - 22-s)4 
x [r;;;);2’-v0g2- (2a)s 

(3.27) 

for Res > 0, s # 2, a > 0. In (3.27) choose s = 1 + 212, n = 0, 1,2,3,. . ., and apply the 
special value formula 

<(2n) = ~ ~ - ‘ n ~ ( - l ) “ + ’ ~ ~ / ( ~ n ) ! .  (3.28) 

By (2.8). r’(l + 2n) = r(l +2n)$(l +2n) = (Zn)!@(l + 2n). That is, (3.27) implies 

Corollary (3.29). For a > 0, n = 0, 1,2,3, . . , 

It is useful  to^ rewrite corollary (3.29) by differentiating the functional equation 

(3.30) 

(3.31) 
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and, by taking s = 2n in (3.31) in conjunction with (3.28): For n > 1 

t ' ( ~  - 2n)n" ~ i - ~ < ' ( 2 n )  n t + ~ ( 1 o g n ) 2 * ~ ~ ' ( - 1 ~ + ' ~ ~ ,  
, 7, - - - 

(n - I)! r(; - n) r($ -n)(2n!) 

As 

(-1)"2%1!4? 
(2n) ! 

r(+ -n)  = ~~ 

(3.32) 

(3.33) 

and as 

we see that 

<'(2n)(2n)! = (-1)~+'<'(1- 2n)rr2"2% + (-1)"+'n"(l0g2x)2~-' B% 

+ (-l)"n2"2"-'B2, @(1+ 2n) - - I] 2n 'I 
which implies that an alternative statement of corollary (3.29) is 

Corollary (3.36). For a > 0,n = 1,2,3, . . . 

(3.35) 

Z(Iog2) (-l)n+l n 2n 

(,> Bb +-- 2" a 

The logarithmic derivative @ is thus eliminated in this version of corollary (3.29). The 
value of c,, for n > I claimed in equation (3.20) now follows from equation (3.23) by 
taking a = n in corollary (3.36). 

CO is computed similarly but more simply. Namely in place of equation (3.23) one has 

2 
logn + -Jh($) (3.37) CO 2 2 lm(sechz nx)  logx dx = - - - 

r 7  R 

since A&) = 0 for x > 0 by (2.5). Thus in constrast to (3.23). the logarithmic derivative 
term in $ survives (from theorem (3.19)) in case n = 0. By corollary (3.29) the right-hand 
side of (3.37) is 2(y -210~2)/n,  since t'(0) = -410g2n. $41) = -y (for y i n  (2.2)). 
Also as $($) = -y - 210g2, equation (3.21) follows. 
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One piece of unfinished business remains concerning the proof of theorem (3.19). 
Namely we must check equation (3.13). Consider s, s, I(sech2 t)e"Ye-bl~lj d t  dy = sech' t dt dy < 00 . (3.38) s , s ,  
where dtdy denotes the Lebesgue measure on R x R. By Fubini's theorem we therefore 
have s, (syh2 r)e"Ye"fY' dt dy = k(sech' t)e'"'e"'"' dy dr. (3.39) 

That is, if f̂  is the Fomier transform of an L'-function f, 

f ( y ) E /  e"'f(t) d t  (3.40) 
R 

then (3.39) reads 

(3.41) 

(3.42) 

By formula (3.5521, no 1, p 361 of [5] the second integral on the right-hand side of (3.42) 
has the value (I/nb)((2, (b/n) + i), which proves (3.13). We note that equation (3.41) 
also follows by the general Plancherel formula for R. 

4. The integrals In@, a: c) 

By definitions (1.5), (1.6) and (3.2) 

Zn(b, a;  c )  = Zb?J,(b, a) + 2J,,+l(b, a) - 2cb21n(a) - 2cZn+1(a). (4.1) 
By theorem (3.19). equation (3.2), and some algebraic manipulation we therefore derive the 
following main theorem. 

Theorem 14.2). The integral I,,(b, a;  c )  in (1.5) is given by 
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where, as before, An, B. and c, are given by (2.5), (3.1) and (3.20) respectively. In 
particular b -+ L(b, a ,  : c) admits an explicit holomorphic continuation to the domain 

(see definition (2.3)) 

For n = 1 equation (2.13) reduces to 

(4.3) Ai(O)= ~ ( - ~ ~ l o g ~ ) - & ~ ~ l o g 2 + $ ~ ’ - 3 ~ ~ < ’ ( - 1 ) .  1 

CI = -R 2 5  [ i ; l o g ~ + l o g 2 -  &+4{’(-1)] 

By (3.20) and (4.3) we get 

(4.4) 

using BZ = {. As BO = 1 and CO = 2logn by (3.21), one has from (2.7) and (4.4) the 
following very special case of theorem (4.2). (taking n = 0 there). 

Corollary (4.5). 

zlo(b, a ,  ; I ) = R  

For a,  b, z 0 

m 
dd (sech2at)(b2 + tZ)(log(bZ + t2) - I ]  dr 

with r, defined by @.I), 

Note that since r(l) = rz(1) = 1 we obtain a proof of (1.4) by specializing b = $, a = R 
in corollary (4.5). 

As in theorem (4.2) the functions b + J.(b, a), defined initially for b > 0, admit an 
explicit holomorphic continuation via theorem (3.19). 
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